mc_model_cdf.RdCDF bar plot for model predictions
mc_obs_cdf(...)
mc_model_cdf(..., n_sample = NA, group_sample = "collapse")The number of sample of draws to show in CDF bar plot.
Default NA. If n_sample is NA, then mc_model_cdf() will use all draws from
posterior distribution.
How to show samples? Default "collapse". If group_sample is "collapse",
then all samples are collapsed together to show in one CDF bar plot; if group_sample
is "group", then each sample is shown in an individual CDF bar plot; if
group_sample is "hops", then mc_model_cdf() will use animation to show each
sample in one frame; if group_sample is an function, then all samples are aggregated
by group_sample().
library(ggplot2)
mcplot(mpg_model) +
mc_model_cdf(n_sample = 50) +
mc_obs_cdf() +
mc_gglayer(coord_flip())
mcplot(mpg_model) +
mc_model_cdf(n_sample = 50) +
mc_obs_cdf() +
mc_condition_on(x = vars(vs))
mcplot(mpg_model) +
mc_model_cdf(n_sample = 50, group_sample = "group") +
mc_obs_cdf() +
mc_condition_on(x = vars(vs))
mcplot(mpg_model) +
mc_model_cdf(n_sample = 50, group_sample = mean) +
mc_observation_transformation(mean) +
mc_obs_cdf() +
mc_condition_on(x = vars(vs))