mc_model_cdf.Rd
CDF bar plot for model predictions
mc_obs_cdf(...)
mc_model_cdf(..., n_sample = NA, group_sample = "collapse")
The number of sample of draws to show in CDF bar plot.
Default NA
. If n_sample
is NA
, then mc_model_cdf()
will use all draws from
posterior distribution.
How to show samples? Default "collapse"
. If group_sample
is "collapse"
,
then all samples are collapsed together to show in one CDF bar plot; if group_sample
is "group"
, then each sample is shown in an individual CDF bar plot; if
group_sample
is "hops"
, then mc_model_cdf()
will use animation to show each
sample in one frame; if group_sample
is an function, then all samples are aggregated
by group_sample()
.
library(ggplot2)
mcplot(mpg_model) +
mc_model_cdf(n_sample = 50) +
mc_obs_cdf() +
mc_gglayer(coord_flip())
mcplot(mpg_model) +
mc_model_cdf(n_sample = 50) +
mc_obs_cdf() +
mc_condition_on(x = vars(vs))
mcplot(mpg_model) +
mc_model_cdf(n_sample = 50, group_sample = "group") +
mc_obs_cdf() +
mc_condition_on(x = vars(vs))
mcplot(mpg_model) +
mc_model_cdf(n_sample = 50, group_sample = mean) +
mc_observation_transformation(mean) +
mc_obs_cdf() +
mc_condition_on(x = vars(vs))