mc_model_ccdf.RdCCDF bar plot for model predictions
mc_obs_ccdf(...)
mc_model_ccdf(..., n_sample = NA, group_sample = "collapse")The number of sample of draws to show in CCDF bar plot.
Default NA. If n_sample is NA, then mc_model_ccdf() will use all draws from
posterior distribution.
How to show draws? Default "collapse". If group_sample is "collapse",
then all draws are collapsed together to show in one CCDF bar plot; if group_sample
is "group", then each draw is shown in an individual CCDF bar plot; if
group_sample is "hops", then mc_model_ccdf() will use animation to show each
draw in one frame; if group_sample is an function, then all draws are aggregated
by group_sample(). See examples for more details.
library(ggplot2)
mcplot(mpg_model) +
mc_model_ccdf(n_sample = 50) +
mc_obs_ccdf() +
mc_gglayer(coord_flip())
mcplot(mpg_model) +
mc_model_ccdf(n_sample = 50) +
mc_obs_ccdf() +
mc_condition_on(x = vars(vs))
mcplot(mpg_model) +
mc_model_ccdf(n_sample = 50, group_sample = mean) +
mc_obs_ccdf() +
mc_condition_on(x = vars(vs))
mcplot(mpg_model) +
mc_model_ccdf(n_sample = 50, group_sample = mean) +
mc_observation_transformation(mean) +
mc_obs_ccdf() +
mc_condition_on(x = vars(vs))