Exporting the output of a multiverse to JSON for Milliways, a multiverse visualisation tool
Abhraneel Sarma
2025-10-12
Source:vignettes/export-milliways.Rmd
export-milliways.Rmd
Introduction
The correct interpretation of a multiverse analysis can be difficult due to their potential size and the complexity of correctly interpreting their uncertainty. Our recent work in developing Milliways, an interactive visualisation interface for the principled evaluation and interpretation of the results of multiverse analysis aims to address this problem. For more details, please refer to our paper.
Milliways
To visualise the results of a multiverse analysis using Milliways, the user needs to provide four files:
-
results
: a JSON file which contains the estimates from each universe in the multiverse analysis. -
code
: a JSON file which contains the code used to generate the multiverse object. -
data
: a JSON file which contains the dataset used in the multiverse analysis. -
analysis
: an HTML file which contains the entire analysis as an Explorable Multiverse Analysis Report (EMAR).
In this document, I outline how to generate each of these files for
the multiverse analysis on the Durante dataset (see
vignette("visualising-multiverse")
). Compiling this
document will, by itself, result in the creation of the EMAR,
provided:
- the
knit_as_emar()
function is declared, and - the document YAML (at the top of the markdown file) is set to
output: html_document
The actual EMAR document which is generated from this file (provided the YAML is changed) can be found here.
Note #1: Creating an EMAR document is not a perfect
process unfortunately, and relies on the HTML tags that
knitr
uses to convert a RMarkdown file to an HTML file. We
created the knit_as_emar()
function assuming users will
compile using the default YAML (output: html_document
) that
is generated when a new RMarkdown file is created using RStudio.
However, the knit_as_emar()
function may not be compatible
with other output formats, such as this one which uses the
html_vignette
format. I have also marked the multiverse
code chunks using a comment to distinguish them from regular R code
chunks. However, if you are knitting as an EMAR, the multiverse code
chunks will appear with a different background colour to the regular
code chunks making them easily distinguishable.
Note #2: If compiling the document as an EMAR, each
code chunk will execute automatically. You do not need to call
execute_multiverse()
to obtain the results unless you want
to extract the results and access it from an R code chunk.
Note #3: If you are not compiling the document as an
EMAR, the code chunks will not execute automatically. The only way to
obtain the results is to first execute all the universes in the
multiverse using execute_multiverse()
and then accessing
the results using an R code chunk.
Note #4: On the use of magrittr pipes
(%>%
) instead of the native R pipe (|>
).
Because multiverse
rewrites R expressions, when I parse the
code declared into individual R scripts, the native R pipe is
“evaluated” (i.e. df |> mutate(...) |> filter(...)
becomes filter(mutate(df, ...), ...)
); this makes the code
readable. Instead I use magrittr pipes which does not “evaluate” the R
expressions.
Analysis
The analysis follows the same steps outlined in
vignette("example-durante")
. The first step is to read the
raw data from the file and store it as a tibble.
data("durante")
data.raw.study2 <- durante %>%
mutate(
Abortion = abs(7 - Abortion) + 1,
StemCell = abs(7 - StemCell) + 1,
Marijuana = abs(7 - Marijuana) + 1,
RichTax = abs(7 - RichTax) + 1,
StLiving = abs(7 - StLiving) + 1,
Profit = abs(7 - Profit) + 1,
FiscConsComp = FreeMarket + PrivSocialSec + RichTax + StLiving + Profit,
SocConsComp = Marriage + RestrictAbortion + Abortion + StemCell + Marijuana
)
M = multiverse()
Cycle Length
In their Durante et al. exclude participants based on the length of their menstrual cycle, and only include those whose cycle lengths are between 25 and 35 days. However, according to Steegen et al., due to the flexibility in the data collection, “this exclusion criterion can be instantiated in two reasonable ways, using either a woman’s computed cycle length or a woman’s self-reported typical cycle length.”
Note #5: we can define a tangle widget to allow the
user to switch between which operationalisation of the outlier exclusion
criteria is used using the syntax
<mv param="cycle_length"/>
. Here,
cycle_length
can be replaced with the name of any
parameter. In the EMAR document, you can see and interact with the
tangle widget. We have removed them in this document as they do not get
rendered properly when compiling to a vignette.
df <- data.raw.study2 %>%
mutate(ComputedCycleLength = StartDateofLastPeriod - StartDateofPeriodBeforeLast) %>%
filter(TRUE)
Certainty
Steegen et al. describe that how certain the participants are in their reported dates can be another justifiable exclusion criteria:
Menstrual Calculation
The flexibility in how the data is collected also allows three reasonable alternatives for estimating a woman’s next menstrual onset, which is an intermediate step in determining cycle day.
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ComputedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ReportedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateNext) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ComputedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ReportedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateNext) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ComputedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateNext) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ComputedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateNext) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ComputedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ReportedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateNext) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ComputedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
df <- df %>%
mutate(NextMenstrualOnset = StartDateofLastPeriod + ReportedCycleLength) %>%
mutate(CycleDay = 28 - (NextMenstrualOnset - DateTesting), CycleDay = ifelse(WorkerID ==
15, 11, ifelse(WorkerID == 16, 18, CycleDay)), CycleDay = ifelse(CycleDay >
1 & CycleDay < 28, CycleDay, ifelse(CycleDay < 1, 1, 28)))
Fertility
Durante et al. classify women into a high or low fertility group based on cycle day, but this classification can be done in various different reasonable ways:
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 9 & CycleDay <= 17, "high", ifelse(CycleDay >=
18 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 7 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 25, "low", NA))))
df <- df %>%
mutate(Fertility = factor(ifelse(CycleDay >= 6 & CycleDay <= 14, "high", ifelse(CycleDay >=
17 & CycleDay <= 27, "low", NA))))
Relationship Status
The participants in the study described their relationship status as one of the following options: (1) not dating/romantically involved with anyone, (2) dating or involved with only one partner, (3) engaged or living with my partner, and (4) married. This allows various different ways of classifying whether a participants is in a relationship or not:
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1, "Single", ifelse(Relationship ==
3 | Relationship == 4, "Relationship", NA)))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
df <- df %>%
mutate(RelationshipStatus = factor(ifelse(Relationship == 1 | Relationship ==
2, "Single", "Relationship"))) %>%
mutate(RelComp = round((Rel1 + Rel2 + Rel3)/3, 2))
Regression Model
The authors perform an ANOVA to study the effect of
Fertility, Relationship and their interaction term, on
the composite Religiosity score. We fit the linear model using the call:
lm( RelComp ~ Fertility * RelationshipStatus, data = df )
inside our multiverse and save the result to a variable called
fit_RelComp
. We use broom::tidy
to extract the
results of the linear model into a tidy data frame.
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
fit_RelComp <- lm(RelComp ~ Fertility * RelationshipStatus, data = df)
summary_RelComp <- fit_RelComp %>%
broom::tidy(conf.int = TRUE)
summary_RelComp
## # A tibble: 4 × 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 6.37 0.405 15.8 4.02e-41 5.58 7.17
## 2 Fertilitylow -1.16 0.534 -2.18 3.02e- 2 -2.21 -0.112
## 3 RelationshipStatusSi… -1.51 0.538 -2.80 5.38e- 3 -2.57 -0.450
## 4 Fertilitylow:Relatio… 2.05 0.714 2.87 4.46e- 3 0.640 3.45
Visualising the Results
We visualise the results by showing the predicted values of the
model. The plot below shows the predicted Religiosity Score
for each level of Fertility
(high or low) and
RelationshipStatus
(Single or Relationship):
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
p_val = round(summary(fit_RelComp)$coefficients[4, 4], 3)
if (p_val < 0.05) p_val = paste0(p_val, "*")
broom::augment(fit_RelComp, interval = "confidence") %>%
group_by(Fertility, RelationshipStatus) %>%
mutate(RelationshipStatus = ifelse(RelationshipStatus == "Relationship", "InRelationship",
"Single")) %>%
summarise(.fitted = mean(.fitted), .upper = mean(.upper), .lower = mean(.lower),
.groups = "drop") %>%
ggplot(aes(x = RelationshipStatus, y = .fitted, fill = Fertility)) + geom_bar(stat = "identity",
position = position_dodge2(preserve = "single"), width = 0.5) + geom_linerange(aes(ymin = .lower,
ymax = .upper), position = position_dodge(width = 0.5)) + geom_text(label = paste0("Interaction:",
p_val), x = 1.5, y = 7.5, colour = "#666666") + labs(x = "RelationshipStatus",
y = "ReligiosityCompositeScore") + ylim(c(0, 8.1)) + theme_minimal()
Note #6: due to the issues with compiling in the RMarkdown vignette output format, we only present the results from the default universe.
Exporting the JSON files
The current section describes how the remaining three JSON files can
be created. If you haven’t already, the first step would be to execute
all the analyses declared in the multiverse using
execute_multiverse()
:
We can then use dedicated functions for each of the JSON files: -
export_results_json
or
export_results_dist_json
. -
export_code_json
Exporting the results
We provide two functions to export the results:
export_results_json
and
export_results_dist_json
. export_results_json
requires the user to specify the following arguments:
-
term
: column name which contains the names of the outcome variables. For example, in the case of a regression, you could use the output of broom::tidy() and thus the argument would be the column which contains the coefficient names. -
estimate
: column name containing the mean / median point estimates for each outcome. -
standard error
: column name containing the standard errors for each outcome. -
dist
: column name containing distributional objects for each outcome variable. Optional only ifestimate
andstandard error
arguments are provided. See below for more details. - (optional)
filename
: if specified, the function will create a file in the specified path; if not specified, it will return the dataframe as shown below:
expand(M) %>%
extract_variables(summary_RelComp) %>%
unnest( cols = c(summary_RelComp) ) %>%
mutate( term = recode( term,
"RelationshipStatusSingle" = "Single",
"Fertilitylow:RelationshipStatusSingle" = "Single:Fertility_low"
)) %>%
export_results_json(term, estimate, std.error) |>
unnest(results) |>
select(.universe, term, estimate, std.error, cdf.x, cdf.y)
## # A tibble: 960 × 6
## .universe term estimate std.error cdf.x cdf.y
## <int> <chr> <dbl> <dbl> <list> <list>
## 1 1 (Intercept) 6.37 0.405 <dbl [101]> <dbl [101]>
## 2 1 Fertilitylow -1.16 0.534 <dbl [101]> <dbl [101]>
## 3 1 Single -1.51 0.538 <dbl [101]> <dbl [101]>
## 4 1 Single:Fertility_low 2.05 0.714 <dbl [101]> <dbl [101]>
## 5 2 (Intercept) 5.78 0.322 <dbl [101]> <dbl [101]>
## 6 2 Fertilitylow -0.583 0.428 <dbl [101]> <dbl [101]>
## 7 2 Single -0.859 0.583 <dbl [101]> <dbl [101]>
## 8 2 Single:Fertility_low 1.85 0.772 <dbl [101]> <dbl [101]>
## 9 3 (Intercept) 6.37 0.402 <dbl [101]> <dbl [101]>
## 10 3 Fertilitylow -1.16 0.531 <dbl [101]> <dbl [101]>
## # ℹ 950 more rows
The resultant JSON file consists of a list of objects (where each object corresponds to one analysis in the multiverse). Within this object, the results attribute contains a(nother) list of objects corresponding to each outcome variable. For e.g., here we have four coefficients (see the results of the regression model), and thus the results attribute will contain four objects. Each object has the following attributes:
-
term
: name of the outcome variable -
estimate
: mean / median point estimate i.e., for any parameter . -
std.error
: standard error for the point estimate i.e., -
cdf.x
: a list of quantiles -
cdf.y
: a list of cumulative probability density estimates corresponding to the quantiles
In addition, it also contains the following attributes, but these are not currently used by Milliways:
statistic
p.value
conf.low
conf.high
A Note on Distributional Assumptions
For simplicity, we assume that each of the outcome variables follow a
normal distribution. However, this may not always be the case. In this
case, we recommend that you should specify the dist
argument to export_results_json
or use the
export_results_dist_json
which allows you to specify distributional
objects for each outcome. We demonstrate how a user can do this with the
following example of a multiverse analysis where the results consists of
two parameters:
,
a normally distributed random variable and
,
a random variable which follows the exponential distribution.
expand_grid(
.universe = seq(1:5),
nesting(
term = c("mu", "sigma"),
dist = c(dist_normal(0, 1), dist_exponential(1))
)
) |>
export_results_dist_json(term, dist) |>
unnest(results)
## # A tibble: 10 × 5
## .universe term
## <int> <chr>
## 1 1 mu
## 2 1 sigma
## 3 2 mu
## 4 2 sigma
## 5 3 mu
## 6 3 sigma
## 7 4 mu
## 8 4 sigma
## 9 5 mu
## 10 5 sigma
## # ℹ 3 more variables: dist <dist>, cdf.x <list>, cdf.y <list>
Exporting the Code
Exporting the code file is relatively simple as the only arguments that need to be provided are the multiverse object and file path:
export_code_json(M, "code.json")
The JSON file consists of two attributes: code
and
parameters
. code
is a list of strings
consisting of the R and multiverse syntax used to implement the
analysis. For readability, we use styler to break up the declared
code. parameters
is an object listing the parameter names
and the corresponding options for each of the parameters declared in the
analysis.
Exporting the Dataset
This function is used to export the (unmodified) dataset that is used
in the analysis, and is a simple wrapper around the
write_json
function.
export_data_json(durante, "data.json")
The JSON file consists of a list of objects, each with two
attributes: field
and values
.
field
is the name of a column corresponding to a variable
in the dataset. values
are a list of values for that
variable in the dataset.