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ABSTRACT 
Social visualization systems have emerged to support 
collective intelligence-driven analysis of a growing influx 
of open data. As with many other online systems, social 
signals (e.g., forums, polls) are commonly integrated to 
drive use. Unfortunately, the same social features that can 
provide rapid, high-accuracy analysis are coupled with the 
pitfalls of any social system. Through an experiment 
involving over 300 subjects, we address how social 
information signals (social proof) affect quantitative 
judgments in the context of graphical perception. We 
identify how unbiased social signals lead to fewer errors 
over non-social settings and conversely, how biased signals 
lead to more errors. We further reflect on how systematic 
bias nullifies certain collective intelligence benefits, and we 
provide evidence of the formation of information cascades. 
We describe how these findings can be applied to 
collaborative visualization systems to produce more 
accurate individual interpretations in social contexts. 
Author Keywords 
Graphical perception, information visualization, social 
proof, social influence, Mechanical Turk. 

ACM Classification Keywords 
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Miscellaneous.  
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INTRODUCTION 

More individuals are generating and analyzing 
interactive data visualizations online than ever before, 
thanks to a growing number of social visualization sites like 
ManyEyes [43] and Swivel [40]. The need for such systems 
is in part driven by the ample availability of open data and 
the strong belief that collective analysis of this data might 
produce better understanding of this information. Social 
interaction, through visualization annotation, is suggested to 
be a primary motivator of use [20, 46, 44]. This leads 
researchers and system designers to consider how they 
might further increase users’ engagement in these 

environments through design features that support and 
encourage social interaction. Such features include active 
and passive collaboration tools that range from threaded 
discussions, social embedding, tagging and other social 
annotation schemes. The most evident impact of these 
designs is that the visualization artifact is no longer 
considered independently of social content as prior 
members’ responses and observations become attached to 
the visualization. This represents a significant shift from 
traditional visualization representation where any 
commentary or annotation was limited to a small group.  

Online visualization communities may generate useful 
insights into data sets, under conditions that lead to the 
majority answer being more likely to be correct than any 
individual response [37, 39]. It is also possible that 
visualization users may misinterpret data when one or more 
prior users within the community have made errors in their 
interpretations of data. Of particular concern is the 
possibility of an erroneous information cascade in which 
initial members seed a discussion with inaccurate 
interpretations that get further distorted over time. A viewer 
new to a complex set of data with numerous options for 
creating visualizations may rely on the visualizations and 
interpretations that prior users have generated to constrain 
the search space. This is not unlike studies on patterns of 
bias arising from social proof in cultural markets like music 
downloading websites, where the popularity of artifacts 
becomes unpredictable and subject to a “rich get richer” 
dynamic [34, 17]. 

The principle of social proof—which suggests that 
actions are viewed as correct to the extent that one sees 
others doing them—falls under the larger category of social 
influence effects: those where a subject’s feelings, thoughts, 
or behaviors are influenced based on observations of others’ 
behavior in a similar situation. Studies of how social 
influence and conformity affect decision-making date back 
to the 1950’s and earlier. In the context of visual 
perception, Asch’s line experiment famously showed that 
the subject’s responses for a simple length judgment task 
can be influenced by the answers first supplied by 
confederates [2]. Many new experiments have since 
identified different types of social influence and the 
contexts in which they are effective [9, 5, 49].  
     Interpreting a data visualization involves a complex set 
of cognitive and perceptual processes that have been 
identified by psychological research on graph 
comprehension (see [36]). Psychological models of graph 
interpretation focus on how the visual properties of a graph 
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(e.g., it’s color, size, format, and so forth) influence how 
easily different information can be encoded from a data set 
(e.g., [11]). Although there is some evidence that prior 
beliefs and expectations have an influence on graph 
interpretation (e.g., [35]), the focus of research has been on 
an individual’s own prior beliefs rather than the effect of 
beliefs of others. The work presented here seeks to extend 
graphical comprehension models to take into account social 
influences so that these models are appropriate for 
describing data interpretation in the context of social 
visualization systems. At the basis of any interpretation 
from visualization is an underlying graphical perception 
task. While we hope to eventually close the gap between 
basic graphical perception tasks and the higher-level 
interpretations that they lead to, our goal here is to provide 
initial evidence for the possibility for social influencers like 
social proof to occur in graphical settings. 

We begin by modifying Cleveland and McGill’s original 
experiments on the accuracy of visual judgment types (as 
executed by Heer and Bostock’s Amazon Mechanical Turk 
implementation [19]). By including socially-derived signals 
(e.g., histograms of putative previous answers), and testing 
for other potential effects (e.g., anchoring), we are able to 
assess the impact of social influence by adjusting the bias in 
these signals towards or away from the “true” answers. Our 
work illustrates how social proof with an unbiased signal 
results in more accurate estimates but that a biased signal 
results in less accuracy. Additionally, we extend the 
classical experiments to include a more difficult, and 
arguably more realistic task, that of judging linear 
associations between variables in a scatterplot. We also 
provide evidence that biased collective estimates for a 
graphical perception task can emerge in social 
environments through information cascades. We use the 
insights gained from our experiments to identify the 
implications for social visualization systems and discuss the 
impact of social proof and other forms of social influence 
on visualization research. 
 
RELATED WORK  

Social visualization environments have captured the 
attention of researchers in visualization, HCI, and CSCW 
who seek to understand the features of successful social 
data analysis systems. Heer, Wattenberg, Viegas, and others 
have completed a series of works aimed at describing the 
space [20, 43, 44, 46]. Motivated by work in various fields 
with socio-organizational bents, the authors of [18] present 
design considerations for asynchronous collaboration in 
visual analysis environments, highlighting issues of work 
parallelization, communication and social organization.  

While highlighting many useful design considerations, 
the tone of these investigations is optimistic in that pitfalls 
that may stem from social processes, individual biases, and 
their combination are rarely considered. Instead, researchers 
discussing socially-related challenges tend to focus the 
most on the tendency toward imbalances in contributions 
among members [29]. There remains little work beyond 

Asch’s classical experiments that attempts to combine 
perception and social influence tasks. We briefly 
summarize the two areas as they motivate our thinking and 
experimental design. 

 
Graphical Perception  
Graphical perception is a mainstay of visualization research 
[11, 41, 7, 45] due to its potential to improve the efficiency 
of automatic presentations of data [26]. Graphical 
perception can be affected by both design and data 
characteristics, warranting its continued investigation. A 
recent set of experiments executed by [19] demonstrated the 
use of Amazon’s Mechanical Turk (MTurk) as a means for 
replicating prior studies and producing new knowledge in 
this area. Statistically comparable results are demonstrated 
despite the lack of control over screen resolution and other 
technical conditions. Qualification tests consisting of 
sample questions for a target task help control for workers’ 
prior experience with graph interpretation and statistical 
literacy. For example, Heer and Bostock replicate one 
experiment from Cleveland and McGills’s seminal study 
([11]) to rank visual variables such as length, area, and 
color for encoding quantitative data. A proportion judgment 
task executed on bar, stack bar, and pie charts (among 
others), is used to rank the dominant visual variables on 
which the chart types are based. Heer and Bostock’s results 
match the original authors’ ranking of visual judgment 
types and add rankings for additional chart types. Though 
MTurk experiments do not address social influence, they do 
demonstrate a type of collective intelligence applied to 
perception tasks (see also [24]). As Heer and Bostock and 
others have suggested [33], Mechanical Turk offers a 
greater diversity of subjects, scalable experimentation, and 
rapid responses. 

An important point with regard to our study of influence 
is that many graphical perception tasks are based in 
intuitive judgment, such as scanning a plot to form an 
impression of the underlying distribution. Intuitive 
judgments are typically faster, require less effort, and are 
less subject to over-thinking than analytic reasoning [1, 23]. 
They can benefit the perceiver of a graph, by displaying 
properties of the data that remain hidden when only the 
statistical parameters are computed [27]. However, they can 
also mislead an observer’s interpretation of a stimulus [1, 
23]. Hence, the fact that graphical perception results are 
replicable in some cases does not mean that subjects’ 
answers are always correct. In some cases, systematic 
biases at the individual level may affect responses (see [36] 
for a compilation).  Proportion-judging, for example, has 
been cited as one task where systematic biases can occur 
[38, 36]. In such cases, rather than errors distributing evenly 
in both directions from the actual answer, such biases may 
lead to potentially “bad” social signals. 

Linear association estimation is another task subject to 
numerous biases and considered relatively difficult for 
humans [15]. Intuitive estimates have in many cases been 
found to be lower than the statistical coefficient r [28]. 



 

 

Further, estimates can be affected by manipulating visual 
characteristics, complicating the accurate judging of an 
association. While social data analysis from visualizations 
often involves further interpreting these underlying visual 
relationships, errors at the perceptual level undoubtedly 
play a role in determining the ultimate analyses.  

 
Social Influence and Social Proof 
Social psychologists use the term social influence to 
describe the tendency to respond in certain ways to the 
behaviors of others. For example, conformity refers to 
changing one's behavior to match responses of others. In 
analyzing conformity, social psychologists typically 
distinguish between informational motivations, arising from 
a desire to form accurate interpretations, and normative 
motivations deriving from a desire to obtain social approval 
[14]. This distinction is important in framing our work’s 
focus on influence as applies to visualization perception to 
prior influence experiments that utilize perception tasks.  
Asch’s well-known line judgment experiment [2] showed 
that individuals asked a simple visual judgment question  
(to identify which of three lines drawn on a blackboard 
matches a target line) responded differently depending on 
the answers first reported by other individuals in the room. 
The powerful support provided that elementary visual 
judgments can be subject to social influence inspired 
various replications and extensions (surveyed extensively in 
[5]). In the Asch paradigm, identifiability and social 
presence—normative social factors—characterize the 
setting [30].  However, subsequent experiments [5] suggest 
that a controversy with this experimental set-up is the 
difficulty of replication within different cultures or time 
periods.  Our work avoids some of these pitfalls by 

concentrating on informational rather than normative 
influence. 
     Under conditions when others’ opinions are expressed as 
quantitative estimates and “judge” and “advisor” are 
equally well-informed, averaging represents an optimal 
strategy for accurate estimation because it cancels out errors 
[37]. Yet in the case of social environments where multiple 
individuals view and interpret a visualization, can 
displaying information on prior responses lead to social 
signals that are biased, thus negating the effectiveness of 
averaging? Our work is motivated by exploration of the 
multiple ways in which social information might be 
represented in interactive visualizations, including 
comments, bar and pie graphs, and graphical annotations 
[48]. We make use of a histogram as a concise 
representation of social information to avoid the additional 
complexities of comments that might confound our 
experimental objectives.  

While not targeted at information visualization, recent 
studies on the social dynamics of online cultural markets 
motivate some of the design of the present work. The 
concept of social or observation learning [3, 4] describes 
cases where an abundance of options leads to conditions 
where popularity is taken as a signal of quality. This theory 
has motivated experiments that simulate information 
cascades in social environments in which individuals 
motivated to make informed choice use social signals. 
Experiments on online music downloading markets [34] 
and collaborative tagging such as bookmarking [17] find 
that success in online cultural markets is difficult to predict 
but can be described through a stochastic urn model based 
on social influence signals restricted to information on 

 
Figure 1: Experimental Design 



 

 

others’ behavior. Similarly, work in recommender systems 
provides evidence that recommendations can change users 
opinions, where users tend to rate toward the system’s 
predictions [12]. With regard to online reviews [49], it is 
shown that exposure of previous opinions induces trend 
following and ultimately the expression of increasingly 
extreme views. The cost of expressing an opinion when 
other previous views are known tends to lead to a selection 
bias that softens the extreme views. 

This form of influence, arising from information on the 
prior decisions of other community members, is similar to 
online collaborative visualization environments, where 
prior responses are commonly provided to the viewer 
(sometimes as text or numerical summaries and sometimes 
depicted with yet another visualization). As in the music 
downloading environments described by [34], the number 
of possible visualizations calls for a natural heuristic for 
dealing with the choice overload, and people may benefit 
through interaction, and notions of commonality when they 
coordinate their choices with others.  

These results echo the concept of social proof, which 
states that a behavior is viewed as correct in a given 
situation to the extent that others are performing it, and that 
more people, more ambiguous situations, and an increased 
sense of similarity to others increases the power of the 
influence [8].  

 
STUDY OBJECTIVES  

For	
   this	
   work	
   we	
   conducted a number of large-scale 
experiments using Amazon’s Mechanical Turk (as well as 
additional validation experiments). We specifically tested 
the following main hypotheses: 
• H1: Adding a social information signal on prior 

workers’ behavior (responses submitted for a graphical 
perception task) will directly influence subject’s 
accuracy on the task at hand.  
o H1a: If the social signal is an accurate 

representation of the true answer (i.e., unbiased), 
errors will decrease for those witnessing that 
signal. 

o H1b: If the signal is inaccurate (i.e., biased), errors 
will increase. 

• H2: Biased responses can emerge through information 
cascades and initial conditions  
o H2a: Accuracy will be significantly affected, in the 

same direction as the social signal.   
o H2b: For an increase in the number of people 

included in the social signal (n) there will be a 
concurrent increase in the weight of the social 
signal on the judgment of person n+1.  

Below we describe the main experiments used to test 
these hypotheses.  The first extends Cleveland and McGill’s 
seminal study of visual judgment types by examining how 
social proof affects visual judgments. The second, which 
adds another layer of task difficulty, is informed by work in 
the estimation of linear associations [10, 32, 28]. We then 
describe an experiment for simulating an information 

cascade in order to determine the likelihood that biased 
collective estimates for a graphical perception task might to 
naturally emerge in online social environments.  

 
EXPERIMENT 1: PROPORTION JUDGMENT 
Method 
Control. Our first experiment was designed to ascertain the 
impact of social information on classical graph perception 
tasks.  As a control, we began by adapting Heer and 
Bostock’s 1a experiments [19] using Mechanical Turk. We 
limited our replication to three chart types distributed across 
their reported ranking of visual judgment types: a bar graph 
representing the high accuracy encoding type position along 
a common scale (T1), a stack bar graph representing 
primarily length encoding (T4), and a bubble chart 
representing relatively low accuracy circular area encodings 
(T7). We depict these within a representation of our 
experimental design (Figure 1). 

Workers who accept the task examine a graph such as a 
bar or pie chart where two bars or sections of the graph are 
marked and then answer two questions: 1) “Which of the 
two MARKED bars is larger?” and 2) “Make a quick visual 
judgment on what proportion the smaller is of the larger.” 
Like Heer and Bostock, we used the first question to verify 
responses and required workers to first pass a qualification 
test of several examples with multiple-choice questions. 
Each of the 30 unique chart versions was launched as an 
individual HIT to be completed by 50 workers for a reward 
of $0.05.  This was raised to $0.08 to increase completion 
speed [27].  

Social Conditions. Using the control data we 
implemented two social conditions through a social signal.  
Specifically, a social histogram showed a distribution based 
on 50 previous answers for the same judgment task. For 
each chart of the 30 charts, two social histograms were 
generated: Target M was set to the mean answer found in 
the control, and Target 1SD was set to one standard 
deviation from the mean in the direction of the greatest 
density of the control distribution (ranging from 3.15 to 
14.8). We chose this particular target in order to test the 
case where the more incorrect social information might still 
be relatively believable. In all situations, Target M means 
were closer to the true proportion values than Target 1SD. 
In generating the histograms, we required that the value 
with the highest count in the histogram fall within three of 
the control mean used to generate the sample. The task 
required the worker to first identify 1) “What answer the 
LARGEST number of previous workers submitted?” 
followed by the two questions in part 1A. The task layout 
can also be seen in Figure 1. 

Because participants saw a mix of biased (Target 1SD) 
and unbiased (Target M) histograms, one possibility was 
that whatever version they saw in their first HIT would 
influence subsequent HITs.  Stated another way, if a biased 
histogram was shown first, was the subject less likely to 
rely on the social signal for subsequent HITs? To insure 
that a worker’s judgments were not affected by ordering, 
we ran several pilot experiments consisting of three chart 



 

 

tasks per HIT with half the 50 subjects first seeing the 
Target 1SD histogram and the other half the Target M (with 
the second and third charts randomly assigned). We saw no 
statistical difference (p > .05) between perception errors in 
the subsequent charts, indicating that whether the first 
observed social histogram was accurate or inaccurate does 
not appear to impact how subsequent histograms were 
perceived. 

 We launched the 60 chart/histogram combinations in 
sets where each worker could do 30 unique chart tasks, with 
equal numbers of Target M and 1SD histograms and HIT 
order counterbalanced by the Mechanical Turk. All workers 
taking part in the social condition completed a qualification 
task, as before, with the addition of several example and 
practice histogram reading tasks, presented separately from 
the proportion judgment portion of the qualification.  
 
Results  
Control. A small majority (56%) of the workers accepted 
all 30 available HITs. We included in analysis all workers 
who had completed HITs regardless of the number 
(sensitivity analysis described below). We used the 
verification question to exclude workers with incorrect 
responses.  Because we were concerned with the bias that 
outliers might lead to in the worst case scenario of charts 
with a large standard deviation in responses, we removed 
outliers by defining a range around the actual proportion for 
each chart (+/- 40) based on approximately 3x the largest 
standard deviation for a chart and omitting values outside of 
this range (a total of 6.0% of responses removed as 
outliers). To validate our control experiment, we use the 
midmeans of log absolute errors (i.e., the mean of the 
middle two quartiles or MLAE) using log2( |judged_percent 
– true_percent| + .125) for each chart and bootstrapping 
(following [11]). We find that the ranking of judgment 
types is preserved and that the rough shape and ranking of 
visual judgment types by accuracy are preserved (relative to 
[19] and [11]).  
Social Conditions. An average of 22% of workers 
completed all 30 tasks in a sequence. We again considered 
all HITs for analysis regardless of the number done by 
individuals, removing outliers and those who didn’t 
understand the task according to the procedure for the 
control. We also excluded HITs where the histogram 
verification question was answered incorrectly. A total of 
7.2% of HITs were removed. As above, we calculated the 
MLAEs for each of the 60 unique chart/histogram pairs. 
Ignoring the particular chart type, we grouped all calculated 

MLAEs by experiment (i.e., control, Target M and Target 
1SD). Figure 2 shows boxplots of the means from the 
control data and each of the social conditions. After doing 
an ANOVA (p < .001) we used a Tukey HSD test to 
compare the MLAEs across all three conditions. We found 
a significant difference for Target M and 1SD (p < .001). 
The lowest errors appear in the Target M condition (mean: 
1.886, stdev: 1.210), followed by the control (mean: 1.989, 
stdev: 1.197), then Target 1SD (mean: 2.267, stdev: 1.173). 
A significant difference also exists between Target 1SD and 
the control (p < .001), although not between  the Target M 
condition and the control (p = .1792). These results are 
consistent with our hypothesis 1 (the further the social 
signal, the less accurate the estimate).  

Sensitivity Analysis. To control for the mix of between- and 
within-subjects data we conducted two sensitivity analyses: 
collapsing errors by individual by condition (reanalyzing 
the difference between the Target M and 1SD conditions 
while controlling for within-subjects variance by computing 
average mean error scores for the M and 1SD conditions for 
each individual), and controlling for effects of particular 
individuals on results by re-running the ANOVA and Tukey 
test using a systematic leave-one-out design. In both cases, 
final t-tests yielded significant results (p-values < .05) for 
all but the Target M and control comparison. 
  
EXPERIMENT 2: LINEAR ASSOCIATION ESTIMATION 
Method 
Control. In a second two-part experiment similar to 1, we 
pseudo-randomly generated 30 correlation values to use in 
generating scatterplots (10 unique values under .5, 10 
values between .5 and .8, and 10 values over .8).  We chose 
these bins after the suggestion ([47]) that many statisticians 
see |r| values below 0.5 as “small”, and values of |r| as 
“large” only when they are 0.8 or greater. For each 
correlation we generated 100 pseudo-random x values from 
a Gaussian distribution as well as pseudo-random y values 
for each. We transformed these (x, y) pairs by adapting 
[32]’s method to generate only positive linear associations, 
resulting in a final 30 scatterplots, one depicting each of our 

 
Figure 2: Mean log absolute error measures for control, 
Target M, and Target 1SD conditions of proportion task. 

 
 

Figure 3: Layout for linear association task. 
 



 

 

original correlations. In the individual tasks, the worker is 
shown a labeled scatterplot of the two variables X and Y 
and asked to estimate the value of the linear association 
between them on a scale of 0 and 100, the scale chosen 
after [10]. As in experiment 1, the 30 unique plots were 
launched as 30 individual HITs with N=50 assignments.  

Each HIT (see Figure 3) consisted of two radio button 
verification questions: 1) “Which of two scatterplots [A and 
B shown side by side in the HIT] shows a larger linear 
association between variables X and Y?”, and 2) “Would 
you describe the linear association in scatterplot A as high, 
medium, or low? Assume high is over 80, medium is from 
50 to 80, and low is less than 50.” The workers were then 
asked to enter a value between 0 and 100 describing the 
linear association in scatterplot A, where 100 represented 
perfect linear association and 0 represented no association. 
Each worker first took a qualification test showing 
examples of 100 and 0 association plots plus two additional 
examples and three practice tasks. Due to the relative 
difficulty of accurately estimating correlations, we allowed 
subjects to pass the qualification given 11 out of 12 correct 
answers. The B scatterplots used for comparison to the A 
plot in the first question of each HIT had an average 
difference of 61 from the true value of the A scatterplot. 
Social Conditions. We modified the control as in 
experiment 1, adding two social influence conditions for 
each of the 30 scatterplots, where the target guess used to 
generate the distribution for the histograms of previous 
answers is the actual mean guess in one condition (M) and 
one standard deviation in the other (1SD) which ranged in 
practice from 3.07 to 22.2. In order to keep the presentation 
of the scatterplots A and B the same as in the control, we 
presented the histogram and histogram question beneath the 
two plots and question 1. Question 3, which asked the 
worker to estimate the association, was below the histogram 
and question 2. The 60 chart/histogram pairs were launched 
as individual hits in sets of up to 30 unique charts, with 
equal numbers of M and 1SD histograms and order 
counterbalanced between workers. 
 
Results  
Control. Under this condition, 75% of the workers accepted 
all 30 HITs in a sequence, yet we considered all completed 
HITs for analysis (sensitivity analysis described below). We 
used the verification questions to validate that subjects 
understood the task, excluding HITs with one or more 
wrong answers. We also excluded from analysis outliers 
that were more than 50 off from the actual correlation in the 
scatterplot (a total of 7.9% were removed), defining this 
boundary using approximately 3x the largest chart standard 
deviation. For each of the scatterplots, we calculated the 
mean estimated linear association and standard deviation.  

We compared the pattern of results from our 
experiments to those of prior work in linear association 
estimation [10, 32].  Figure 4 shows the actual pattern 
observed (with a hand drawn line, in red, illustrating the 
expected patterns given previous literature that 

demonstrated maximum errors at “medium” correlations).  
We first noted that accuracy, as defined by the log absolute 
error of estimates, dipped at linear association levels of 50 
and 80, then jumped back to the more expected trend. We 
attribute these jumps to the anchoring effect of the question 
text on the page. Recall that 50 and 80 were used to 
describe the transitions from low to medium to high 
correlations.  Because this may have led to a slight bias in 
utilizing these answers, when the correlation was in fact 50 
or 80, error was reduced.  In future experiments we hope to 
eliminate these types of signals. However, this is not critical 
for the current experiment as we are not seeking to compare 
errors by task difficulty and data is aggregated for all 
correlation types.  Additionally, outside of this difference, 
our pattern of log absolute errors accuracy measures 
matched prior results, in that the accuracy of estimates of 
association declined as the actual linear association moved 
closer to 50.   
Social Conditions. An average of 58% of the workers 
accepted all 30 HITs in a sequence though we again 
considered all HITs in analysis, removing those that 
qualified as outliers using the procedure described for the 
Control. We also excluded HITs where the histogram 
verification question was answered incorrectly (a total  
10.8% was removed between the two conditions). We 
calculated the midmean log absolute error accuracy 
measure as in Experiment 1 (including bootstrapping) for 
each of the 60 unique chart/histogram pairs, and ran an 
ANOVA (p = 0.4506). In this case, the log absolute error 
means for the three conditions were quite close (Target 1SD 
mean: 3.010, stdev: 1.122; control mean: 3.040, stdev: 
1.128; Target M mean: 3.319, stdev: .8436). The lack of 
significance of the ANOVA and the relatively high errors 
from the Target M condition led us to consider the 
assumptions behind the hypothesis that as a social signal 
becomes more biased, errors will increase.    
     If we assume that the Target M histogram value is 
always between the actual answer for the task and the 
Target 1SD value (as it was in Experiment 1), then this 
pattern goes against our hypothesis that as a social signal 

 
Figure 4: Log absolute errors across 30 linear association 
tasks (pre-bootstrapping), with expected pattern in red. 
 



 

 

becomes more biased, errors will increase. In looking closer 
at the data, however, we realized that the results remained 
unclear with regard to H1, because in 16 of the 30 cases, the 
Target 1SD histogram value was in fact closer to the truth. 
Considering that prior research has shown humans to be 
relatively bad at linear association estimation, this outcome 
is plausible. Yet because the ordering is random, this 
confuses our relationships. 
     To overcome this complication, we regrouped the data 
based on which of the two histograms displayed a mean 
answer that was closer to the actual association (which we 
re-termed the Closer condition) versus the histogram that 
was farther from the actual association (Farther condition). 
With this measure, our previous observation—that the 
farther the social signal is from the actual, the less accurate 
the estimate—holds. An ANOVA yielded significance (p < 
.01). Tukey’s HSD test showed no significant difference 
between the Control and Closer condition (p = 0.5391), nor 
between the Control and Farther condition (p = 0.1113). 
However, we saw a significant difference between the 
Closer and Farther condition (p < .01). Figure 5 depicts the 
ordering of mean absolute errors (Close mean: 2.767, stdev: 
.9533; control = 3.040, stdev: 1.128; Far mean: 3.561, 
stdev: .7740). We discuss these results further in the 
discussion section. 
 
ANCHORING EFFECTS 
Before going further to investigate the possibility that “bad” 
social signals might naturally emerge in a social 
visualization environment, we validate that the results of 
experiments 1 and 2 did in fact represent social influence 
rather than non-social influences. As examples of the latter, 
anchoring and adjustment [42] are psychological heuristics 
that subconsciously influence the way people intuitively 
assess probabilities. A subject starts with an implicitly 
suggested reference point (the "anchor"), and makes 
adjustments to that number based on additional information. 
Anchoring, which is related to priming, is the general 
activation of a particular idea or ideas based on associations 
between a stimulus and that idea(s). 

To test for anchoring we ran a validation experiment 
that displayed the social histograms as in Experiment 1 but 
labeled them as something unrelated to the chart (which 
was itself labeled). For example, the histogram might be 
labeled “Temperature Recorded at Location 11” and a bar 
chart as “Employee Salary in Company R” (a set of 
unrelated labels that nonetheless made sense in the context 
of histogram and the different chart types were manually 
selected). This condition also made a clear delineation 
using different colored backgrounds behind each sub-task 
in the single HIT. We ran the conditions as 30 HIT 
sequences for $.10 a HIT with N=25 unique workers who 
had not yet done any of our prior tasks. 

Prior to this we used a paired t.test to confirm that 
adding a label to the proportion-judging chart itself would 
not affect responses, by rerunning our control experiment 
with (N=25) but with a label (e.g. “Salaries of Employees in 
Company R” for a bar chart) above the chart (p = 0.1214). 

Under the social condition with delineation, 72% of 
workers accepted all 30 HITs in the sequence (2.4% of 
responses were omitted in processing the results). After 
performing an ANOVA (p < .05), we used Tukey’s HSD 
test to find that the delineated Target 1SD MLAEs were not 
significantly different than the control (p = .1594). As the 
same non-delineated Target 1SD histograms were different 
from control in the social task (p < .001), we can infer that 
anchoring is likely not contributing to increased errors as 
the histogram shifts from the “true” value. 

 
EXPERIMENT 3: INFORMATION CASCADE AND INITIAL 
CONDITIONS 
Method 

Although the previous experiments clearly demonstrate 
that if an individual is presented with social histograms 
their judgment will change, it is not entirely obvious that 
different histograms would emerge from the same social 
process (e.g., an information cascade or initial conditions).  
Stated another way, we seek to establish whether judgments 
of the n+1th person are influenced by the number of 
previous judgments (n) and the distribution of those 
judgments.  If an individual over-utilizes the judgments of 
others, one might expect that a) the initial condition would 
impact all subsequent judgments (e.g., if the first person is 
really off, everyone after them will be really wrong) and 
that b) the more individuals providing the estimate, the 
more “trusted” that social signal would be (e.g., person 31 
relies more on the estimate than person 5).   

If such a cascade pattern holds, an initial bad estimate 
may grow or become more entrenched as more and more 
people contribute their estimates. To simulate an iterated 
process we presented 1500 HITs that displayed histograms 
with varying n’s and displaying a histogram with different 
means. An indication informing the participant that they 
were person n+1 in a series of individuals was made in 3 
places on the interface (the histogram caption, question text, 
page heading, all in bold). Histogram means were centered 
at one standard deviation to the left (based on the control 
data), one standard deviation to the right, and at the mean of 

 

 
 

Figure 5: Mean log absolute error measures for control, 
Target M, and Target 1SD conditions of linear association 
task (above), and regrouped Farther and Closer 
conditions.  

 



 

 

the control experiment (yielding 3 charts). The n variable 
was varied from 1 to 37 in steps of 4.  Note that the control 
experiment serves as a test at n=0 (i.e., the participant is the 
first to make a judgment). In total, we produced 30 
histograms per chart.  This was done for all 10 circular area 
plots (chart type T7) yielding 300 total variants, which we 
launched as 10 HIT sequences at $.08 per HIT with 5 
workers per variation (total of 1500 HITs).  

We constructed a number of linear models to test for the 
relationship of actual answer (the Turker’s judgment) 
against histogram mean, n, and the true proportion.  
Specifically, the model:  
 

Answern+1 = b0 + b1* true_proportion + 
b2*histogram_mean + b3 * histogram_mean*n + e  

 

attempted to capture the increasing effects of n on the 
answer as well as the participant’s personal evaluation of 
the true proportion. Sensitivity analyses with robust 
standard errors were performed using generalized 
estimating equations in R to account for the repeated 
measures per person. These findings were robust to control 
for the correlation induced by collecting multiple 
measurements per study subject. 

 
Results 

Modeling the main effects of the actual value and the 
suggested histogram mean on the answer produced an  
adjusted r2 of .8122. Both the actual value and histogram 
mean were positively associated with the person’s answer 
with a slightly large effect for the true proportion 
(effect=0.65, standard error = 0.27, p < .001) than the 
histogram mean (effect=0.439, standard error = .033, p < 
.001). Interestingly, we could find no significant effect of n 
in this model or any other we used for sensitivity analysis.   

The results of this experiment suggest that hypothesis 
H2b does not hold. In other words, the opinion of 5 people 
counts the same as that of 30, and the first judgment, 
erroneous or not, sets the stage for all subsequent answers. 
For the sake of completeness we discuss below several 
potential limitations of our experimental conditions that 
might partially affect the results. 
 
DISCUSSION  
Findings and Implications 

The main finding in this work is the evidence we 
provide that responses to online graphical perception tasks 
can be subject to influence from socially-derived 
information signals such as social proof via prior responses, 
and that such biased signals are possible given a situation 
where any n+1 person can see the responses of the n 
individuals who saw a graph before him or her.  
Social Errors. In the proportion judgment experiments, we 
observed a clear difference between the individuals exposed 
to Target 1SD histograms over Target M. Furthermore, 
because biased histograms like our Target 1SD might 
emerge from a cascade process there is a need for any 
system utilizing such social signals to be highly aware of 
this possibility, and to potentially mask social signals in 

situations where this type of bias might happen. 
Systematic Bias. To mitigate information cascades, a 
designer might have the intuition to mask the social signal 
(e.g., hide the histogram) until a sufficient number of 
samples is obtained.  However, as demonstrated by the lack 
of significant difference between Target M and the control, 
there does not appear to be any benefit (or conversely, 
harm) in displaying this information. This result is only 
surprising if one assumes that graphical perception lacks 
systematic bias. However, because individual judgments are 
wrong, and generally wrong in the same “direction,” the 
overall collective opinion does not appear to be any better 
than the individual one. Worse, in situations such as the 
linear estimation task, when systematic bias and estimation 
errors were so high that Target 1SD histograms were 
equally likely to be closer to the true correlation as Target 
M (16 of the 30), there is a clear indication that the social 
signal, even the individually-derived one, has a negative 
impact on perception. This observation indicates that 
caution is necessary—or at least awareness—when 
designing systems in domains with systematic bias. 
    
Social Influence and Future Work 

Social influence, construed more broadly, is known to 
be a result of multiple features. In this study we have 
targeted a specific type of social influence, one centered 
around social proof, which we believe can serve as a jump-
off point for future work.  

One opportunity for future work is to address the 
reasons why, as in our Experiment 3, the number of 
previous responses (n) did not impact the model. Given that 
the results of our social conditions did appear to be based 
on the socially-derived signal, we would expect that more 
responses would result in a stronger social information 
signal, exerting a greater effect. Effects of this sort have 
been validated in other contexts by [34, 12]. Yet this was 
not suggested by our data. We hypothesize that it may be 
that the MTurk environment did not support the type of 
systematic processing that may have been required for a 
worker to sufficiently understand the relationship between 
the total count in the histogram and the potential value of 
the social signal. Utilizing a true iterated experiment (e.g., 
through [25]) may yield a different result. In addition, while 
we chose a one standard deviation difference in order to 
investigate cases where the social signal remains believable, 
future work might offer more insight into how biased a 
social signal can be while still exerting similar effects. 

We also note that our study is not designed to induce 
normative social influence stemming from a desire for 
social approval. The histograms are informational in nature. 
Because the decisions of workers in our experiments were 
not witnessed in the presence of others, workers may have 
felt more confident in deviating from the distribution. 
While some recent research suggests that anonymity need 
not always degrade social influences effects in computer-
mediated environments, it is suggested that a sense of social 
identity must be in place for influence to occur [31]. 



 

 

Furthermore, social influence is also known to be stronger 
when signals come from others whom the subject deems 
similar to her/himself [8]. The extent to which a person 
identifies with message source (majority or minority) is a 
significant factor in determining information processing 
strategies plus outcome of influence attempt [13].  Such 
theories indicate that stronger influence might be achieved 
had the presence of the other workers and their similarity to 
the subject been emphasized. Because users of social 
visualizations sites are not commonly designed around 
anonymity, additional normative effects may lead to more 
significant effects on judgments within these frameworks.    

Another future inquiry might further investigate the 
effects of task difficulty on influence, as the relative 
difficulty has been cited to have an effect on the degree to 
which people accept advice [16]. Because the distance 
between the Target M and 1SD histograms in our 
experiment was defined relative to the variance of the 
control data (e.g. standard deviation), our results did not 
allow us to cleanly analyze whether task difficulty affected 
the level of influence. Yet such knowledge would offer 
designers of social visualization systems further insight into 
the particular types of situations where the risks of social 
influence are most heightened. 

The contributions we make to social visualization 
system design are based on experiments that focus on a 
narrow type of task and environment. However, our results 
indicate that graphical perception, a key first step in the 
interpretation of visual information, can be influenced by 
social signals that may be present in collaborative 
visualization systems. Clearly, actual systems like 
ManyEyes are complex environments. Factors such as 
expertise and interest in the content, prior experience with 
graph interpretation and statistical literacy (see [36] for 
others), undoubtedly play a role in such systems. Such 
environments present individuals with graph 
comprehension tasks of varying difficulty, and may also 
present situations that fall along a continuum of objectivity 
with regard to the pattern being visualized. For example, 
while the tasks we investigate here have objective answers 
in the true proportions and linear associations that are 
visualized, there are many tasks where an objectively true 
answer might not be possible, such as graph aimed at 
visualizing an evaluation formed by subjective sentiments 
on a topic. These may still serve as important points of 
discussion and collective analysis, and thus potential 
distinctions in social influence patterns as determined by 
objectivity may offer further insight for designers.  
 
CONCLUSION 

In this paper, we have presented evidence suggesting 
that responses to graphical perception tasks online may be 
subject to social influence. We demonstrate through a large-
scale study that social proof has an impact on visual 
judgment, and with it, perceptual accuracy. By modifying 
classic graphical perception tasks on proportion judgment 
and linear association estimation, we found a clear 
indication that an erroneously biased social signal will 

result in more errors and conversely that a less-biased one 
will lead to fewer errors. However, we also identify that 
systematic bias makes many socially derived signals (e.g., a 
histogram of individually-collected results) erroneous on 
the whole, and these signals do not commonly provide a 
definite benefit over individual assessments. This calls into 
question some of the benefits of “collective intelligence” 
and highlights a number of design risks. We also identify 
that initial seeds in social signals (e.g., the first person to 
contribute to the histogram) allow information cascades to 
rapidly take hold and impact all future answers. Collective 
visualization systems hold a great deal of promise for the 
great influx of data experienced today. However, previous 
work on visualization systems frequently ignores social 
effects, treating visualization interpretation as an individual 
process. As our study highlights, there is a need to form 
new theories and models that explain the impact of social 
processes on community-driven visualization environments 
and lead to new systems. 
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